Detecting Driver Distraction Using Deep-Learning Approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting driver distraction

The increasing use of in-vehicle information systems (IVISs), such as navigation devices and MP3 players, can jeopardize safety by introducing distraction into driving. One way to address this problem is to develop distraction mitigation systems, which adapt IVIS functions according to driver state. In such a system, correctly identifying driver distraction is critical, which is the focus of th...

متن کامل

End-to-End Deep Learning for Driver Distraction Recognition

In this paper, an end-to-end deep learning solution for driver distraction recognition is presented. In the proposed framework, the features from pre-trained convolutional neural networks VGG-19 are extracted. Despite the variation in illumination conditions, camera position, driver’s ethnicity, and genders in our dataset, our best fine-tuned model, VGG-19 has achieved the highest test accuracy...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Detecting Impersonation Attack in WiFi Networks Using Deep Learning Approach

WiFi network traffics will be expected to increase sharply in the coming years, since WiFi network is commonly used for local area connectivity. Unfortunately, there are difficulties in WiFi network research beforehand, since there is no common dataset between researchers on this area. Recently, AWID dataset was published as a comprehensive WiFi network dataset, which derived from real WiFi tra...

متن کامل

Detecting distraction and degraded driver performance with visual behavior metrics

Driver distraction contributes to approximately 43% of motor-vehicle crashes and 27% of near-crashes. Rapidly developing in-vehicle technology and electronic devices place additional demands on drivers, which might lead to distraction and diminished capacity to perform driving tasks. This situation threatens safe driving. Technology that can detect and mitigate distraction by alerting drivers c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, Materials & Continua

سال: 2021

ISSN: 1546-2226

DOI: 10.32604/cmc.2021.015989